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Abstract 

Mappings that preserve neighbourhood relationships are important in many contexts, from 
neurobiology to multivariate data analysis. It is important to be clear about precisely what 
is meant by preservhg neighbourhoods. At least three issues have to be addressed: how 
neighbourhoods are defined, how a perfectly neighbourhood preserving mapping is de- 
fined, and how an objective function for measuring disavpancies from perfect neighbour- 
hood preservation is defined. We review several standard methods, and using a simple 
example mapping problem show that the different assumptions of each lead to non-trivially 
different answers. We also introduce a particular measure for topographic distortion, which 
has the form of a quadratic assignment problem. Many previous methods are closely related 
to this measure, which thus serves to unify disparate approaches. 

Problems of mapping occur frequently both in understanding biological processes and in formulating 
abstract methods of data analysis. An important concept in both domains is that of a "neighbour- 
hood preserving" map, also sometimes referred to as a topographic, topological, topology-preserving, 
orderly, or systematic map. Intuitively speaking such maps take points in one space to points in 
another space such that nearby points map to nearby points (and sometimes in addition far-away 
points map to far-away points). Such maps are useful in data analysis and data visualization, where 
a common goal is to represent data from a high-dimensional space in a low-dimensional space so as 
to preserve as far as possible the "internal structure" of the data in the high dimensional space (see 
e.g. [Krzanowski 19881). Just a few of the algorithms that have found application in this context are 
principal components analysis (PCA), multidimensional scaling [Torgerson 1952, Shepard 1962a, Shep- 
a d  1962b, Kruskal 1964a, Kruskal 1964b], Sammon mappings [Sammon 19691, and neural network 
algorithms such as the self-organizing map (SOM) [Kohonen 1982, Kohonen 19881 and the elastic net 
[Durbin & Willshaw 1987, Durbin & Mitchison 19901. One hope is that by preserving neighbourhoods 
in the mapping it will be possible to see more clearly structure in the high-dimensional data, such as 
clusters, or that this type of dimension-reduction will reveal that the data occupies a lower-dimensional 
subspace than was originally apparent. 
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In neurobiology there are many examples of neighbourhood-preserving for instance be- 
tween the retina and more central structures [Udin & Fawcett 19881. Another type of neighbohood- 
preserving mapping in the brain is that, for instance, from the visual world to cells in the primary 
visual cortex which represent a small line segment at a particular position and orientation in the visual 
scene [Hubel & Wiesel197a. A possible goal of such biological maps is to represent nearby points in 
some sensory "feature space" by nearby points in the cortex [Durbin & Mitchison 19901. This could 
be desirable since sensory inputs are often locally redundant: for instance in a visual scene pixel 
intensities are highly predictable from those of their neighbours. In order to perform "redundancy 
reduction" (e-g. [Barlow 1989]), it is necessary to make comparisons between the output of cells in the 
cortex that represent redundant inputs. Two ways this could be achieved are either by making a direct 
connection between these cells, or by constructing a suitable higher-order receptive field at the next 
level of processing. In both cases, the total length of wire required can be made short when nearby 
points in the feature space map to nearby points in the cortex (see [Cowey 1979, Durbin & Mitchison 
1990, Nelson & Ebwer 1990, Mitchison 1991, Mitchison 19921 for further discussion). 

So far we have discussed neighbourhood preservation in intuitive terms. However, it is vital to 
ask what this intuitive idea might mean more precisely, i.e. exactly what computational principles 
such mappings are addressing. Without a clear set of principles it is impossible to decide whether a 
particular mapping has achieved "neighbourhood preservation", whether one mapping algorithm has 
performed better than another on a particular problem, or what computational goals mappings in the 
brain might be pursuing. A large number of choices have to be made to reach a precise mathematical 
measure of neighbowhood preservation, as we discuss below. Different combinations of choices will 
in general give different answers for the same mapping problem, and the combination of choices 
that is most appropriate will vary from problem to problem. Several measures of neighbourhood 
preservation have recently been proposed which implement particular sets of choices. In many cases 
there are few a pn'wi grounds for choosing between diffemt formulations: rather each may be useful 
for different types of problem. From a biological perspective, an interesting question is to investigate 
which combinations of choices yield mappings closest to those seen experimentally in various contexts, 
and how such choices could be implemented in the brain. From a practical perspective, it is desirable to 
understand more about the choices available and the degree to which they are appropriate for different 
types of problems. 

We adopt the distinction made in [Marr 19821 between the "computational" and "algorithmic" levels of 
analysis. The former concerns computational goals, while the latter concerns how these computational 
goals are achieved. These two levels can sometimes be difficult, or inappropriate, to disentangle when 
addxessing biological problems [Sejnowski et a1 19881. However, for discussing topographic mappings 
from an abstract perspective, it is important to be dear about this distinction. As an example, minimal 
wiring and minimal path length (discussed later) are clear computational level principles. However, 
the SOM [Kohonen 1982) exists only at the algorithmic level since it is not following the gradient of 
an objective function [Erwin et a1 19921. Ln particular, given a map, it does not provide a number 
measuring its quality. 

This paper reviews a number of different measures of neighbourhood preservation. We show that 
several of them can, under certain circumstances, be economically described as particular special cases 
of a more general objective function. In order to explore the consequences of the diffemt assumptions 
embodied in each measure, we examine in detail their application to a very simple mapping problem. 
This is the mapping from a square to a h e ,  or more particularly a regular array of 10 x 10 points 
to a regular array of 1 x 100 points. This is one of the simplest examples of a dimension mismatch 
between two spaces. The investigation proceeds in three stages. Firstly we consider four exemplar 
maps, and calculate how each measure ranks these in terms of achieving neighbourhood preservation. 
Secondly, the sensitivity of some of these rankings to the measurement of similarity in each space is 
investigated. Thirdly, simulated annealing is used to calculate the (close to) optimal square-to-line map 
for each measure. We discuss the implications of these results for the appropriate choice of measure 
for a particular problem. 

In order to make a direct comparison of measures purely in tenns of their topographic properties, 
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only a restricted class of mapping problems is discussed. To eliminate issues of clustering or vector 
quantization, we assume that there are the same number of points in each space, and that the mapping 
is bijective (i-e. one-to-one). In addition, we assume that in each space there exkts a fixed "similarity 
structunf"' that specifies for every pair of points its degree of similarity. In a simple case, this similarity 
is just euclidean distance between points in a geometric space. However, the similarity struchm need 
not have a geometric interpretation. For example, for purely "nearest neighbour" s t r u m ,  similarities 
are binary. These restrictions give a simple enough framework so that several different approaches to 
neighbourhood preservation can be compared. 

2 Defining perfection and measures of discrepancy 

There are several choices for defining a mapping that "perfectly" preserves the neighbourhood structure 
of data in one space in another space. The strongest is to say that the mapping must preserve similarities; 
that is, for each pair of points in one space, its similarity should be equal to the similarity of the images 
of those points in the other space. A slighter weaker one is that the similarity values between pairs 
of points should be perfectly correlated. Weaker still is that the mapping should only preme similarity 
~ r d ~ n g s ;  that is, rather than comparing the absolute values of the similarity between pairs of points in 
one space and the similarity between their images in the other, one is concerned only that the relative 
ordering of similarities within the two sets is the same. If similarity values in the output space are 
plotted against similarity values in the input space for a particular map (as in for example figure 3), the 
first criterion specifies that all points should lie on a straight line at 45 degrees to the x axis, the second 
that points lie on a straight line of arbitrary angle, and the third that the points lie on a line that is not 
necessarily straight, but is monotonically inmasing. It is important to be clear about which of these 
h goals (or perhaps some fourth goal) any particular mapping principle implies. Different goals 
will be appropriate for different applications. 

However, in most practical applications none of these varieties of perfect map will be achievable, and 
a measure of distxpancy is required which assesses the degree to which perfection has been achieved. 
Given a definition of perfection there are many ways to measure disuepancy, each of which will 
compare different non-perfect maps differently. Before surveying some of the measures that have 
been proposed, we first introduce the C measure. This is simply the comlation coefficient between 
similarities in the two spaces. Several previously proposed measures turn out to be equivalent (under 
the restrictions described above) to C, for particular choices of similarity function. 

2.1 The C measure 

Consider an input space Vin and an output space V,,+, each of which contains N points (see figure 1). 
Let M be the mapping from points in Vin to points in V,,,. We use the word "space" in a general sense: 
either or both of Vin and VOut may not have a geometric interpretation. Assume that for each space 
there is a symmetric "similarity" function which, for any given pair of points in the space, specifies by 
a non-negative scalar value how similar (or dissimilar) they are. Call these functions F for Vin and G 
for V,,,. Then we define a cost functional C as follows [Goodhill et a1 19961' 

where i and j label points in Vim and M(i) and M(j) are their respective images in VOub The sum 
is over all possible pairs of points in Vin. Since we have assumed that M is a bijection it is therefore 

l~eaders may notice that under particular assumptions C can be interpreted as a discrete form of the continuous mapping 
functional introduced in [Luttdl1990, Mitchison 1995). This connection is discussed in more detail in section 3.15. 
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Figure 1: The mapping framework. 

invertible, and C can equivalently be written 

where now i and j label points in V,,, and M- ' is the inverse map. A good mapping is one with a high 
value of C. However, if one of F or G is given as a dissimilarity function (i.e. increasing with decreasing 
similarity) then a good mapping has a low value of C. How F and G are defined is problem-specific. 
They could be euclidean distances in a geometric space, some (possibly non-monotonic) function of 
those distances, or they could just be given, in which case it may not be possible to interpret the points 
as lying in some geometric space. Clearly C measws the correlation between the F's and the G's, and 
thus falls into the second of the three categories described above for defining mapping perfection. It 
is also straightforward to show that if a mapping that preserves orderings exists, then maximizing C 
will find it. This is equivalent to saying that for two vectors of real numbers, their inner product is 
maximized over all permutations within the two vectors if the elements of the vectors are identically 
ordered, a proof of which can be found in [Hardy et a1 1934, page 2611. 

2.2 Relation of C to quadratic assignment problems 

Formulating neighbourhood preservation in terms of the C measuii sets it within the well-studied 
class of quadratic assignment problems (QAPs). These occur in many different practical contexts, and 
take the form of finding the minimal or maximal value of an equation similar to C (see [Burkard 19841 
for a general review, and [Lawler 1963, Finke et a1 19871 for more technical discussions). An illustrative 
example is the optimal design of typewriter keyboards [Burkd 19841. If F(i, j) is the average tirne 
it takes a typist to sequentially press locations i and j on the keyboard, while G(p, q)  is the average 
frequency with which letters p and q appear sequentially in text of a given language (note that in this 
example F and G are not necessarily symmetrical), then the keyboard that minimizes average typing 
time will be the one that minimizes the product 

(d equation I), where M(i) is the letter that maps to location i The substantial theory developed for 
QAPs is directly applicable to the C measw. As a conate  example, QAP theory provides several 
different ways of calculating bounds on the minimum and maximum values of C for each problem. 
This could be very useful for the problem of assessing the quality of a map relative to the unknown best 
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possible (rather than simply making a comparison between two maps as we do later). One particular 
case is the eigenvalue bound [Finke et a1 1987. If the eigenvalues of symmetric matrices F and G are 
Ai and pi respectively, such that Al < Az < - . . .< A, and pi > p2 > . . . > p,, then it can be shown that 
ti Ai bi gives a lower bound on the value of C. 

QAPs are in general known to be of complexity NP-hard. A large number of algorithms for both exact 
and heuristic solution have been studied (see e.g. [Burkard 19841, the references in [Finke et a1 19871, 
and [Simit 19911). However, particular instantiations of F and G may make possible very efficient 
algorithms for finding good local optima, or alternatively may beset C with many bad local optima. 
Such considerations provide an additional practical constraint on what choices of F and G are most 
appropriate. 

3 A survey of measures 

3.1 Measures equivalent to C for particular choices of similarity functions 

3.1.1 Metric Multidimensional Scaling 

Metric multidimensional scaling (metric MDS) is a technique originally developed in the context of 
psychology for representing a set of N "entities" (e.g. subjects in an experiment) by N points in a 
low- (usually two-) dimensional space. For these entities one has a matrix which gives the numerical 
dissimilarity between each pair of entities. The aim of metric MDS is to position points representing 
entities in the low-dimensional space so that the set of distances between each pair of points matches 
as closely as possible the given set of dissimilarities. The particular objective function optimized is the 
summed squared deviations of distances from dissimilarities. The original mechod was presented in 
[Torgerson 19521; for reviews see [Shepard 1980, Young 1987. 

In terms of the framework presented earlier, the MDS dissimilarity matrix is F. Note that there may 
not be a geometric space of any dimensionality for which these dissimilarities can be represented by 
distances (for instance if the dissimilarities do not satisfy the triangle inequality), in which case Vin 
does not have a geometric interpretation. Vout is the low-dimensional, continuous, space in which the 
points representing entities are positioned, and G is euclidean distance in VOut. Metric MDS selects the 
mapping M, by adjusting the positions of points in Vout which minimhs 

If a value of zero can be achieved, the resulting map clearly satisfies all three definitions of perfection 
above. 

Under our assumptions, this objective function is identical to the C measure. Expanding out the square 
in 3 gives 

N 

7 F (F(L jI2 + G(M(i), ~ ( j ) ) ~  - 2F(i, j)G(M(i), M(j))). 
i=1 j<i 

(4) 

 TI^ last term is twice the C measure. The entries in F are fixed, so the first term is independent of the 
mapping. In metric MDS the sum over the GIs varies as the entities are moved in the output space. If 
one instead considers the case where the positions of the points in Vout are fixed, and the problem is 
to find the assignment of entities to positions that minimizes equation 3, then the sum over the G's is 
also independent of the ma . In this case the metric MDS measure becomes exactly equivalent to C. 4 One effect of varying the G term in metric MDS is to match the scale of the representation to that of 
the entries in the F matrix. 
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3.1.2 Minimal wiring 

In minimal wiring [Mitchison & h r b i n  1986, Durbin & Mitchison 19901, a good mapping is defined to 
be one that maps points that are nearest neighbours in Vrn as close as possible in VOub where closeness 
in Vout is measured by for instance euclidean distance raised to some power. The motivation here is 
the idea that it is often useful in processing e.g. sensory data to perform computations that are local in 
some space of input features Vin. To do this in Vout (e.g. the cortex) the images of neighbouring points 
in Vin need to be connected; the similarity function in Vout is intended to cap- the cost of the wire 
(e.g. axons) required to do this. Minimal wiring is equivalent to the C measure for 

For the cases of 1-D or 2-D squarr arrays investigated in [Mitchison & Durbin 1986, Durbin & Mitchison 
19901, neighbours are taken to be just the 2 or 4 adjacent points in the array respectively. 

3.1.3 Minimal path length 

In this scheme, a good map is one such that, in moving between neamt neighbours in VOub one moves 
the least possible distance in Vin. This is for instance the mapping required to solve the Traveling 
Salesman Problem (TSP) where Vin is the distribution of cities and Vout is the one-dimensional tour. 
This goal is implemented by the elastic net algorithm [Durbin & Willshaw 1987, Durbin & Mitchison 
1990, Goodhill & Willshaw 19901, which measures similarity in Vin by squared distances: 

1 : p,q neighbouring 
0 : otherwise 

where vk is the position of point k in Vin (we have only considered here the regularization term in the 
elastic net energy function, which also includes a term matching input points to output points). Thus 
minimal wiring and minimal path length are symmetrical cases under equation 1. Their relationship 
is discussed further in [Durbin & Mitchison 19901, where the abilities of minimal wiring and minimal 
path length axe compared with xegard to reproducing the strudurr of the map of orientation selectivity 
in primary visual cortex (see also [Mitchison 19951). 

3.1.4 The approach of Jones et a1 

Uones et a1 19911 investigated the effect of the shape of the cortex (Vout) relative to the lateral geniculate 
nuclei (Vi,) on the overall pattern of ocular dominance columns in the cat and monkey, using an 
optimization approach. They desired to keep both neighbouring cells in each LGN (as defined by a 
hexagonal array), and anatomically corresponding cells between the two LGNs, nearby in the cortex 
(also a hexagonal array). Their formulation of this problem can be expressed as a maximization of C 
when 

1 : i, j neighbouring, corresponding 
0 : otherwise 

and 
1 : p, q first or second nearest neighbours 
0 : otherwise 

For 2-D Vin and Vout they found a solution such that if F(i, j) = 1 then G(M(i), M(j)) = 1, Vi ,  j. 
Alternatively this problem could be expressed as a minimization of C when G(p, q) is the stepping 
distance (see below) between positions in the Vout array. They found this gave appropriate behaviour 
for the problem addressed. 
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3.1.5 Minimal distortion 

Luttrell and Mitchison have introduced mapping functionals for the continuous case. Under appro- 
priate assumptions to reduce them to the discrete case, these are equivalent to C. Expression in this 
restricted form helps to connect these functionals with the other measures we have discussed. 

[Luttrell 1990, Luttrell 19941 defined a "minimal distortion principle" that can be interpreted as a 
measure of mapping quality. He defined "distortion" D as 

x and y are vectors in the input and output spaces respectively. y is the map in the input to output 
M o n ,  x' is the (in general different) map back again, and P(x) is the probability of occurrence of 
x. x' and y are suitably adjusted to minimize D. An augmented version of D can be written which 
includes additive noise in the output space: 

dx P(x) dn n(n) d{x, xt [y (x) + n] } o = J  1 
where z(n) is the probability density of the noise vector n. Intuitively, the aim is now to find the 
forward and backward maps so that the reconstructed value of the input vector is as close as possible 
to its original value after being corrupted by noise in the output space. In e.g. [Luttrell1990], the d 
function was taken to be { x  - xt[y(x) + n]J2. In this case, [Luttrell1990] showed that the MD measure 
can be differentiated to produce a learning rule that is almost the SOM rule. 

For the discrete version of this, it is necessary to assume that appropriate quantization has occurred so 
that y(x) defines a 1-1 map, and xt(y) defines the same map in the opposite direction. In this case the 
minimal distortion measure becomes equivalent to the C measure, with F(i, j) the squared euclidean 
distance between the positions of vectors i and j (assuming these to lie in a geometric space) and 
G(p, q)  the noise process in the output space. 

The minimal distortion principle was generalized in [Mitchison 19951 by allowing the noise process and 
reconstruction e m r  to take arbitrary forms. For instance they can be reversed, so that F is a gaussian 
and G is euclidean distance. In this case the measure can be interpreted as a version of the minimal 
wiring principle, establishing a connection between minimal distortion (and hence the SOM algorithm) 
and minimal wiring. This identification also yields a self-organizing algorithm similar to the SOM for 
solving minimal wiring problems, the properties of which are briefly explomi in [Mitchison 19951. 

[Luttrell1994] generalized minimal distortion to allow a probabilistic match between points in the two 
spaces, which in the discrete case can be expressed as 

where D is the distortion to be minimized, F is euclidean distance in the input space, P(k(i) is the 
probability that output state k occurs given that input state i occurs, and P(jlk) is the corresponding 
Bayed inverse probability that input state j occurs given that output state k occurs. This reduces to C 
in the special case that P(k(i) = P(i(k), which is true for bijections. A great deal of theory is developed 
in [Luttrell1994] pointing out the usefulness of this revised functional for converting problems with 
hard constraints to those with soft constraints. 

3.2 Other metric measures 

These measures try to match similarities, but are not equivalent to C. 
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32.1 Sammon mappings 

The Sammon approach [Sammon 19691 tries to match similarities exactly, by moving points around in 
V,,, but uses normalization terms which make the mapping nonlinear. The objective function is 

This is similar to metric MDS, except that now the discrepancies for small F's are weighted more than 
for large F's. If the scale of the discrepancies between the F's and the G's is roughly the same as the size 
of the F's, this serves to even up the contributions to the objective function from different size F's and 
G's. It has recently been argued that this approach produces better maps than for instance the SOM 
[Bezdek & Pal 1995, Mao & Jain 1995, Lowe & Xpping 19961. Note that the Sammon formula is not 
symmetric to interchange of F and G. 

3.2.2 Demartines and HCrault 

A measure related is the Sammon approach is that of [Demartines & HCrault 1995, Demartines & 
HCrault 19961: 

N 

( ~ ( i .  I) - G(M(i). ~ ( j ) ) ) '  h(G(M(i). M(i))). (6) 
i = l  j< i  

h is some decreasing function, therefom if M(i) and M(j) are very dissimilar, the measure is not con- 
cerned about whether i and j are similar or not. Demartines and HCrault argue that this measure has a 
more efficient minimization algorithm than the Sammon measure, and produces better rep~sentations 
of "strongly folded strudures". 

3.3 Nonmetric measures 

These measures aim to match only similarity orderings. 

33.1 Nonmetric Muitidimensional Scaling 

Nonmetric MDS (NMDS) aims to position points as in metric MDS, except that now it is attempted to 
match only the ordering of similarities between the input and output spaces, rather than the absolute 
values [Shepard 1962a, Shepard 1962bl. The mathematical measure used to quantrfy deviations from 
perfed ordering is somewhat ad hoc, and in fact often varies between different packaged software 
routines that implement NMDS. The first measure proposed was called STRESS [Kruskal1964a, Kruskal 
1964b1, and is given in our notation by 

where the D(i, j)'s a= "disparitiesr'. These are target values for each G(i, j) such that if the G's 
achieved these values, then ordering would be pnserved and STRESS would be zero. An algorithm 
for calculating the disparities is given in [Kruskal1964b]. Another commonly used version of NMDS 
is ALSCAL [Takane et a1 19771, which uses an objective function called SSTRESS ("squared stress"): 
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Note the normalization by D's, rather than GIs as for STRESS. A different algorithm is used in ALSCAL 
for calculating disparities than the Kruskal method. Note that STRESS and SSTRESS do not purely 
measure ordinal discrepancies, since they are expressed in terms of absolute similarity values rather 
than orderings. 

3.3.2 The approach of w l l m a ~  et a1 

h [Villmann et a1 19941 the primary concern is with many-to-one mappings of data in a geometric, 
continuous input space Vi, to a square array of points. We consider the situation after some process 
of, for instance, vector quantization has occurred, so that there are now the same number of points in 
both spaces, the positions of points in the input space are fixed, and we can talk about the degree of 
neighbourhood preservation of the bijective mapping between these two sets of points. [Villmann et 
a1 19941 give a way of defining neighbourhoods, in terms of "masked Voronoi polyhedra" (see also 
[Martinetz & Schulten 19941). This defines a neighbourhood strudne where for any two points (two 
centers of masked Voronoi polyhedra), there is an integer dissimilarity which defines the "stepping 
distance" between them (cf [Kendall 19711). They define a series of measws @(k) which give the 
number of times points which are neighbours in one space are mapped stepping distance k apart in 
the other space (they consider all indices for both dhxtions of the map). If all the @(k) are zero they 
call the mapping "perfectly topology preserving". 

The distribution of non-zem @(k) gives useful information about the scale of "discontinuities" in the 
map. However, no rule is specified in [Villmann et a1 19941 for combining the @(k) into a single number 
that specifies the overall quality of a particular mapping. A simple way to do this would be to take 
a sum of the +(k) weighted by some function of k. If this function were inmasing with k (and good 
mappings were defined to be the minima of the product), this would express a desire to minimize large 
scale discontinuities at the expense of small scale ones. Whether this or some other function is most 
appropriate depends on the problem. 

3 3 3  The Topographic Product 

The "topographic product" was introduced in [Bauer & Pawelzik 19921, based on ideas first discussed 
in the context of nonlinear dynamics. It is somewhat similar to the approach of [Villmann et a1 
19941; in that they define a series of m e a s m  Q(i, j) which give information about the preservation 
of neighbourhood relations at all possible scales. Briefly, Ql (i, j) is the distance between point i in the 
input space and its jth nearest neighbour as measured by distance orderings of their images in the 
output space, divided by the distance between point i in the input space and its jth nearest neighbour 
as measwd by distance orderings in the input space. Q2(i, j) gives analogous information where 
i and j are points in the output space. The Q1s are then combined to yield a single number P, the 
"topographic product", which defines the quality of the mapping: 

Although originally expressed in terms of geometric spaces, the distance oderings in this definition 
could equally well be replaced by abstract similarity orderings that do not have a geometric interpre- 
tation. Again the concern is with orderings: P = 0 for a perfedly oder-pmerving map. [Bauer & 
Pawelzik 19921 show the application of the topographic product to dimension-reducing mappings of 
speech recognition data. 

2The topographic prroduct was inhuduced first; however it is more convenient for exposition purposes to explain it second. 



70 3rd Joint Symposium on Neural Computation Proceedings 

3.3.4 The approach of Bezdek and Pal 

[Bezdek & Pal 19951 also argue for a criterion that preserves similarity orderings rather than actual 
similarities. They call such a transformation "metric topology preserving" or Mm. The method they 
propose for calculating the discrepancy from an MTP map is to use a rank comlation coefficient 
between similarities in the two spaces, in particular Spearman's p. This is defined as the linear 
comlation coefficient of the ranks (see e.g. [Pxvss et a1 19881): 

where Ri and Si are the corresponding rankings in the ordered lists of the F's and and G's. p has 
the useful property that it is bounded in the range [ - I ,  I], and [Bezdek & Pal 19951 prove that p = 1 
corresponds to an MTl? map. Interesting comparisons are made in [Bezdek & Pal 19951 between the 
performance as measwed by p of PCA, Sammon mappings and the SOM applied to various mapping 
problems. They conclude that the SOM generally performs sigruficantly worse. 

4 Comparing measures for the square to line problem 

Comparisons between the performance of various mapping algorithms on particular problems have 
been illuminating [Durbin & Mitchison 1990, Bezdek & Pal 1995, Mao & Jain 1995, Lowe & 'Tipping 
19961. Here we ask a different set of questions. How do different measures compare in rating the 
same maps? Do the measures generally give a consistent o r d e ~ g  for different maps? How well 
does this ordering compare with intuitive assessments? How sensitive are these orderings to the 
measure of similarity employed? Answers to these questions reveal more about the relationships 
between different measures, and aid the choice of appropriate topography and similarity measures for 
particular problems. 

We consider the very simple case of mapping between a regular 10 x 10 square array of points (Vi,) 
and a regular 1 x 100 linear array of points (V&. This is a paradigmatic example of dimension 
reduction, also used in [Durbin & Mitchison 1990, Mitchison 19951. It has the virtue that solutions are 
easily represented. Figure 2 shows the four alternative maps considered (labelled A-D). Map A is an 
optimal minimal path solution. Maps B and C are taken from [Durbin & Mitchison 19901: map B is an 
optimal minimal wiring solution [Mitchison & Durbin 19861, and map C is that found by the elastic 
net algorithm (for parameters see [Durbin & Mitchison 1990]).~ Map D is a random mapping. Visual 
inspection suggests that this corpus should provide a range of different quality values. 

4.1 Euclidean dissimilarities 

First we take the F and G dissimilarity functions to be euclidean distances in each array, except for 
appropriate modifications for the minimal path and minimal wiring measures as described earlier. 
Later we investigate gaussian similarities. F i p  3 shows scatter plots of euclidean dissimilarities in 
the output space versus euclidean dissimilarities in the input space: note the various types of deviation 
from a straight or monotonically increasing line. The question is now how each measure trades off the 
diffemt types of non-monotoniaty apparent in figure 3. The actual numbers yielded by some of the 
measures discussed above are shown in table 1, and the relative ordering assigned to the diffemt maps 
for all measures is shown in table 2. There are several points to note. As expected, all of the measures 
rate the random map D the worst, and p 0 for this map. The Sammon, C, p and STRESS measures 
show remarkable agmment in their orderings, rating map A the best, despite being each formulated 
on quite different mathematical principles. It is a common intuition in the mapping literature that for a 

3~uaiitatively similar maps would be found by suitable variants of the SOM, such as [Angeniol et a1 19881. 
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Figure 2: Some alternative mappings between a square array and a line. 

case such as shown in f i p  2 the best map is one that resembles a Peano curve, i.e. map C. However, 
for euclidean dissimilarities only the minimal distortion and topographic product measures agree with 
this assessment. As a control, we repeated the calculations using dissimilarities in both spaces that 
were euclidean distances raised to various powers between 0.5 and 2.0. In all cases the ordering for 
each measure was unchanged, except for minimal wiring, where the orderings obtained for powers 0.5 
and 0.6 (in addition to power 1.0) are shown in table 2 (see also [Durbin & Mitchison 1990]).' With these 
additions, every possible ordering of the maps is repmented in the table, given that D is always last. 
Spearman's p has the attractive feature that it is unchanged by any such monotonic transformation 
of the F's or G's. It also has the advantage of having a predictable value for random maps. More 
generally, it appears that the output of most measures is best txvated as being at the ordinal level of 
measurement [Stevens 19511. 

In terms of absolute costs, there is little discrimination between the thxee non-random maps given by 
the Sammon measure. This is because the range of F is from 1 to a, whereas the range of G is 
from 1 to 100, and this inherent, map-independent mismatch dominates. Greater discrimination can 
be obtained by multiplying all G values by some number a < 1 (e.g. a = s). For the minimum 
path measure the cost for map C is greater than that for map A by 8(& - I ) ,  since there are 8 diagonal 
segments in map C. Although a minimum of the elastic net energy function is at map A, in practice (for 
unknown reasons) the algorithm tends to find slightly longer, more "folded" maps. This is analogous 
to the effect observed for a different mapping problem, where striped solutions are obtained even 
though these are not the global optimum [Goodhill & Willshaw 1990, Dayan 1993, GoodhiU et a1 19961. 

41n a neurobiological context this exponent is intended to c a p h  the "cost" of a length of axon It is easy to conshuct 
biological a'guments for a wide range of exponents, SO it is interesting to consider the sensitivity of minimal wiring to this 
parameter. 
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A B 

Figwe 3: Scatterplots of G(M(i), M(j) against F(i, j) for the four maps shown in figure 2. 

A general issue we have not considered is how ease of implementationand efficient optimizationmight 
bias a choice of meas-. 

Why is the "intuitively appealing" map C so ramly rated the best for euclidean dissimilarities? The 
answer lies in figure 3 and the way ordering violations at diffemt scales am assessed by each measure 
(for further discussion see [Bauer & Pawelzik 19921). For map C, the majority of points in the square 
map close on the line to their 4 neighbours in the square. However, for some points near the middle of 
the square, one neighbour is mapped to a point on the line a very large distance away (of the order of 
half the length of the line). In figurr 3(c) these points am in the upper left zgion of the graph. These 
distances are far greater than the maximum equivalent distances in maps A or B, and accounts for the 
poor rating given to map C by several of the m e a s m .  

4.2 Gaussian similarities 

In order to investigate the sensitivity of the ordering of maps to the similarity measure employed, we 
now consider the case whem one of F or G is a gaussian function of euclidean distance. This implies 
that one is now concerned only with local neighbourhoods in one of the spaces, on a scale determined 
by the width of the gaussian. One trivial consequence is that inmasing measures become decreasing 
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Table 1: Costs for the four maps given by measures discussed in the text. "Type" tells how the measure 
changes with increasing mapping quality, so that for type "decrease" small numbers mean better maps. 
The topographic product (TP) is decreasing in absolute value, and the negative values reflect the fact 
the dimension of the output space (the line) is "too small". Spearman's p was calculated using the 
routine spear of [Press et a1 19881, and STRE!3S by the program ALSCAL [Young & Harris 19901. For 
the minimal distortion measure, a was taken to be 2.0. 

Table 2: Relative ordering of the 4 maps given by each measure. First thxee columns show minimum 
wiring (MW) for different powers (see section 4.1). 

and vice versa (cf table 1). For instance, a good value of p is now one close to - 1. A more complex 
issue is what happens more generally to measures based on orderings. The gaussian transformation is 
monotonic, therefore these measures should be unaffected (given the increasing/de<~easing reversal). 
However, from a practical perspective, all values of G(p, q)  for the euclidean distance betweenp and q 
greater than a few standard deviations will be effectively zero. If the standard deviation is very much 
less than the maximum distance, this implies a large degree of degeneracy in the orderings. Measures 
which require rank orderings to be calculated, such as p, are not well-equiped to deal with the majority 
of the G's being equal, and give unreliable results. This is illustrated in figure 4. The issue of tied ranks 
has been much discussed in the NMDS literature [Kntskal1964a]; however, it has been shown that if 
there are few distinct levels in the similarity matrix then spurious results can be produced [Simmen et 
a1 1994, Goodhill, Simmen & Willshaw 19951. Since the Topographic Product, p, and NMDS measures 
all involve calculating rank orderings, we do not consider them in this section. Measures that match F's 
and G's are also clearly inappropriate when F or G is a gaussian function of distance, which discounts 
the metric MDS and Sammon measures. From table 1 this leaves just the C measure, since this includes 
minimal path and minimal wiring. We now explore this case in moxe detail. 

4.21 Gaussian G 

The case of gaussian G and euclidean F is closely related to Luttrell's original minimal distortion 
measure (see section 3.1.5). It can also be thought of as a generalized version of the minimal path 
measme: besides keeping nearest neighbours in the output space nearby in the input space, it is 
attempted to also keep further neighbours nearby. This has profound consequences. Consider moving 
along the line in map A. In just a few steps one has moved a substantial distance across the square. 
However in map C, moving a few steps along the line generally causes a much smaller displacement 
across the square. Thus, when more than first neighbours are considered, it becomes favourable to 
"turn comers" and form a Peano-type curve, as in map C. For instance, using a G of one times nearest- 
neighbours plus only 0.1 times second nearest neighbours gives map C as the best. This behavior is 
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Figure 4 The effect on measwe p of increasing degeneracy in the G values. (a) G is given by euclidean 
distance up to a ,  and then saturates at a for all greater values. p is stable for a > 60, but as a d m a s e s  
and the amount of degeneracy increases, p starts to change rapidly. Although the orderings of the 
maps are roughly preserved, the actual values of p cease to be meaningful. @) G is given by cd2/', 
d = euclidean distance (sign of y axis is reversed). In theory, p should have the same value for all a. 
In practice, when a is very much less than the maximum d (100 in this case), the calculation of p fails 
to yield meaningful vaules. In both (a) and (b), for smaller values of a and a than those plotted, the 
spear mutine of [Press et a1 19881 gave a run-time emr. 

illustrated more generally in figure 5. Thus the intuition that C is a good map is correct for the case of 
euclidean F and gaussian G. Although this case is closely related to the SOM, in the SOM algorithm 
the size of the neighbourhood function is constantly shrinking. This lack of a fixed neighbourhood 
scale makes it hard to pin down exactly what mapping problem the algorithm is attempting to solve. 

4.2.2 Gaussian F 

Gaussian F is equivalent to minimal wiring extended to a larger neighbourhood. The value of C for 
the four maps as the size of this neighbourhood changes in shown in figw 6. Map B eventually loses 
the lead in favor of map A. 

5 Near-optimal maps for the square to line problem 

Above we quantitatively compared diffemt measures for four given maps for the square to line 
problem. A more qualitative insight into the relationship between m e a s m  can be obtained by 
comparing the optimal map for each measure. Calculation of the global optimum by exhaustive search 
is clearly impractical: the= are of the order of 100! possible mappings for this problem, and the 
continuous optimization algorithms that exist for some of the meas- (e.g. Sammon) cannot be used 
in this discrete case. Instead we employ simulated annealing [Kirkpatrick et a1 19831 to find a solution 
close to optimal. The parameters used are shown in table 3. We tested the efficacy of this technique 
by first applying it to the minimal path and minimal wiring pmblems, where optimal solutions are 
explicitly known. Maps with costs within about 1% of the optimal value were found (figure 7). 

The objective functions optimized were metric MDS, Sammon, Spearman, and Minimal Distortion for 
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Figure 5: Map costs for G = eed2/'. (a) Small u. Map A is initially the best, but is quickly beaten by 
map C as u increases (crossing point u - 1). @) Large u. Map C eventually relinquishes the lead back 
to map A. 
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Figure 6: Map costs for F = e - d 2 / d .  (a) Small u. Map B is initially the best, but is beaten by map A for 
u water  than about 4.0. @) Large U. The same overall profile is seen as in the gaussian G graph. 



Parameter 
Initial man 

I 

Move set 
Initial temperature 
Cooling schedule 

Cooling rate 
Acceptance criterion 

U v ~ e r  bound 

Value 
1 

Random 
Pairwise interchanges 

3 x mean energy difference over 10,000 moves 
Exponential 

0.998 
1000 moves at each temverature 1 

10,000 moves at each temperature 1 
I Stoppingcriterion I Zero acceptances at upper bound I 

Table 3: Parameters used in simulating annealing runs: for further explanation see e.g. [van Laarhoven 
& Aarts 19871. 

Figure 7: Testing the minimization algorithm for cases where the optima are known. (a) Mininal path 
length solution, cost = 100.243, 1.3% larger than the optimal of 99.0. (b) Minimal wiring solution, 
cost = 91 7.0,0.3% larger than the optimal of 914.0 [Durbin & Mitchison 19901. An optimal minimal 
path length solution was found when the cooling rate was increased to 0.9999 and the upper bound 
increased to 100,000 moves; however it was computationally impradical to run all the simulations this 
slowly. 
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Figure 8: (a) Metric MDS measure, cost = 6352324. (b) Samrnon measure, cost = 38.5. (c) Spearman 
measure, cost = 0.698. Note that, as expected, for each measure the value is better than the best value 
given in table 1 for the four exemplar maps. 

a range of 0.' Figure 8 shows the maps found by this procedure for the metric MDS, Sammon and 
Spearman measws. The illusion of multiple ends to the line is due to the map frequently doubling 
back on itself. For instance, in the fifth column of the square for the optimal Sammon map, the vertical 
component for neighbouring points in the line progresses in the order 2,3,5,9,4,7,8,6, 10, 1. This 
local discontinuity arises because these measures take into account neighbourhood preservation at all 
scales: local continuity is not privileged over global continuity, and global concerns dominate. 

Figure 9 shows minimal distortion solutions for varying a. For small a, the solution resembles the 
minimal path optimum of figure 7(a), since the contribution from more distant neighbours compared 
to n e a ~ s t  neighbours is negligible. However, as a increases the map changes form. Local continuity 
becomes less important compared to continuity at the scale of a, the map becomes more spiky, and the 
number of large-scale folds in the map gradually decreases until at a = 20 there is just one. This last 
map also shows some of the frequent doubling back behaviour seen in figure 8. 

5.1 Classes of mappings 

Three qualitatively different types of map are apparent from f i p s  8 and 9, which we will refer to 
as classes 1,2 and 3. For class 1, the MDS and Sammon measures (figure 8(a,b)), the line progresses 
through the square by a series of locally discontinuous jumps along one axis of the square (horizontal 
in the MDS case, vertical in the Samrnon case; which axis is chosen is the result of random symmetry 
breaking), and a comparatively smooth progression in the orthogonal direction. One consequence of 
this is that nearby points in the square never map too far apart on the line.6 For class 2, the Spearman 
measure and minimal distortion for u = 20 (figures 8(c) and 9(d)), the strategy is similar except that 
there is now one fold to the map. This decreases the size of local jumps in following the line through 
the square, at the cost of intmducing a "seam" across which nearby points in the square map a very 
long way apart on the line. For class 3, minimal distortion for small a (figure 9(ac)), the strategy is to 
introduce several folds. This gives strong local continuity, at the cost that now many points that are 
nearby in the square map to points that are far apart on the line. 

'we did not optimize the topographic product or !XRES measures due to the large amount of computation involved in 
calculating these measures. 

%ne might expect that for a Fectangle mapping to a line, the optimal maps for these meas- would have discontinuous 
jumps parallel to the short axis of the nxtangle and a relatively smooth progression parallel to Lhe long axis. We optimized the 
Sarnrnon measw for a 20 x 5 m n g l e  mapping to a 1 x 100 array, and obtained this result. 
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Fipm 9: Minimal distortion solutions. (a) a = 1 .O, cost = 43.3. (b) a = 2.0, cost = 214.7. (c) a = 4.0, 
cost = 833.2. (d) a = 20.0, cost = 18467.1. 
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6 Discussion 

6.1 Lessons from comparison of the four exemplar maps 

We have shown that, of the four maps, the one considered best depends on both the measure of 
topography and the measure of similarity employed. Thus, comparisons of maps should be qualified 
by precise statements about which measures are being used. For instance, self-organizing algorithms 
such as the elastic net and the SOM p d u c e  maps of the same form as map C. This is a good mapping 
only under particular interpretations of what the mapping problem actually is (e.g. euclidean F and 
gaussian G similarity measures, minimal distortion topography measure). When such assumptions 
are justified for various mapping problems needs to be addressed. In particular, these assumptions 
favor the preservation of local struchm in the output to input direction. It is generally not discussed 
why this should be an appropriate goal for any particular problem (though see [Durbin & Mitchison 
19901). 

6.2 Lessons from the calculation of optimal maps 

What do the optimal maps tell us about which measures are most appropriate for different problems? 
If it is desired that generally nearby points should always map to generally nearby points as much 
as possible in both directions, and one is not concerned about very local continuity, then measures in 
class 1 are useful. This may be appropriate for some data visualization applications where the overall 
structure of the map is more important than the fine detail. If, on the other hand, one wants a smooth 
progression through the output space to imply a smooth progression through the input space, one 
should choose from class 3. This may be important for data visualization where it is believed the data 
actually lies on a lower dimensional manifold in the high-dimensional space. However, an important 
weakness for this  presentation is that some neighbourhood relationships between points in the input 
space maybe completely lost in the ~su l t ing   presentation. For understanding the strudure of cortical 
mappings, self-organizing algorithms that optimize objectives in class 3 have proved useful [Durbin 
& Mitchison 19901. However, very few other objectives have been applied to this problem, so it is 
still an open question which am most appropriate. Class 2 represents a form that has been hitherto 
unapprrciated. There may be some applications for which such maps are worthwhile, perhaps in a 
neumbiological context for understanding why diffemt input variables are sometimes mapped into 
different areas rather than interdigitated in the same area. 

6.3 Many-to-one mappings 

We have discussed only the case of one-to-one mappings. In many practical contexts there are many 
more points in Vin than V,,, and it is necessary to also specrfy a many-to-one mapping from points 
in Vi, to N "exemplar" points in Vim where N = number of points in Vout. It may be desirable 
to do this adaptively while simultaneously optimizing the form of the map from Vin to Vout. For 
instance, shifting a point from one cluster to another may increase the "clustering cost", but by moving 
the positions of the cluster centers decrease the sum of this and the "continuity cost". The elastic 
net, for instance, trades off these two contributions explicitly with a ratio that changes during the 
minimization, so that finally each cluster contains only one point and the continuity cost dominates 
([Durbin & Willshaw 19871; for discussions see [Simic 1990, Yuille 19901). The SOM trades off these 
two contributions implicitly. [Luttrell1994] discusses allowing each point in the input space to map to 
many in the output space in a probabilistic manner, and vice-versa. 
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6.4 Further biological considerations 

Minimal wiring considerations are a powerful tool for understanding brain connectivity [Mitchison 
1991, Mitchison 19921. Here we have discussed the effect of including neighbourhoods on a larger scale 
than only nearest neighbours. A particular biological problem that has been much discussed in the 
context of mappings is to understand the pattern of interdigitation in the primary visual cortex of cat 
and monkey of attributes of the visual image such as spatial position, orientation, ocular dominance, 
and disparity. It has been proposed several times that the form of this map is a result of a desire 
to preserve neighbourhoods between a high-dimensional space of features and the two-dimensional 
cortex (e.g. [Durbin & Mitchison 1990, Goodhill & Willshaw 1990, Swindale 1992, Obermayer et a1 
19921). Usually geometric distance in the high-dimensional space is taken to represent dissimilarity. 
The approach outlined in the present paper suggests that one way to proceed in addressing this 
and related biological mapping problems is to (1) formulate some reasonable way of specdying the 
similarity functions for the space of input features and the cortex (this could for instance be in terms 
of the correlations between different input variables, and intrinsic cortical connections, rrspedively), 
then (2) explore which sets of mapping choices give maps resembling those seen experimentally, taking 
account of biological constraints. A first step in this direction for interdigitated maps such as ocular 
dominance colwnns in primary visual cortex is taken in [Goodhill et a1 19961. A consideration of 
how to optimize some measure of topography by, in addition to adapting the mapping, allowing the 
similarity function in the cortex to change (within some constrained range), could provide insight into 
the development of lateral connections in the cortex (cf [Katz & Callaway 19921). 

However, one-to-one mappings are rare in biological contexts. Rather more frequently axonal arbors 
form many-to-many connections with dendritic trees. There are several conceivable ways in which 
for instance the C measure could be generalized to allow for a weighted match of each point in Vi, to 
many in VOub and vice-versa (cf [Luttrell1994]). 
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